Northeast African Paleoenvironments and Niche Spacing Across the Afro-Eurasian Faunal Exchange

Ashley E. House¹, Daniel R. Green², Kevin Uno²

¹Columbia College, Columbia University, ²Lamont-Doherty Earth Observatory, Columbia Climate School, Columbia University

The collision of the African and Eurasian plates ~29 Ma transformed the African landscape, introducing a diverse assemblage of northern immigrant fauna, while endemic African faunal diversity declined. This collision is captured by fossil-rich Oligocene deposits from the Topernawi Formation and later Miocene deposits of the Turkana Basin in the East Africa Rift, providing a unique opportunity to explore the role northern immigrants and changing environments played in the decreasing diversity of indigenous African fauna. We analyzed stable carbon (δ^{13} C) and oxygen (δ^{18} O) isotope values of Oligocene fossil enamel samples (n = 45) from the pre-collision Topernawi Formation with existing Eocene to Miocene isotope records (n = 246) from northeast Africa. At Topernawi, low δ^{13} C and δ^{18} O enamel values indicate a warm and wet environment in Turkana at 29 Ma, immediately prior to the exchange-especially in comparison to more arid Miocene conditions. Similar conditions at contemporaneous Chilga in Ethiopia suggest warm and wet conditions were prevalent in East Africa despite a global cool phase. Relative niche space in Turkana measured by δ^{13} C and δ^{18} O breadth decreased among indigenous fauna like hyraxes and proboscideans after the exchange. This suggests that not only drier conditions but competition and changed niche partitioning likely also played a role in observed decreases in diversity and subsequent extinctions of indigenous fauna.